Development of Power Demand Forecasting Algorithm Using GMDH
نویسندگان
چکیده
منابع مشابه
Combination of Forecasting Using Modified GMDH and Genetic Algorithm
Many studies have demonstrated that combining forecasts improves accuracy relative to individual forecasts. In this paper, the combing forecasts is used to improve on individual forecasts is investigated. A combining approach based on the modified Group Method Data Handling (GMDH) method and genetic algorithm (GA), is called as the GAGMDH model is proposed. Four time series forecasting techniqu...
متن کاملfault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
Forecasting Demand for Electric Power
We are developing a forecaster for daily extremes of demand for electric power encountered in the service area of a large midwestern utility and using this application as a testbed for approaches to input dimension reduction and decomposition of network training. Projection pursuit regression representations and the ability of algorithms like SIR to quickly find reasonable weighting vectors ena...
متن کاملA GMDH-Based Traffic Flow Forecasting Model
Traffic flow forecasting, the core element of intelligent transportation system, plays an important role in traffic information services and traffic guidance. Since neural network prediction needs plenty of training samples, it cannot guarantee the real-timeness of traffic flow forecasting. In this paper, a GMDH network was constructed by self-organization, and the network was applied to traffi...
متن کاملHybridizing Gmdh and Least Squares Svm Support Vector Machine for Forecasting Tourism Demand
In this paper, we proposed a novel hybrid group method of data handling least squares support vector machine (GLSSVM) algorithm, which combines the theory a group method of data handling (GMDH) with the least squares support vector machine (LSSVM). With the GMDH is used to determine the inputs of LSSVM method and the LSSVM model which works as time series forecasting. The aim of this study is t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Korean Institute of Intelligent Systems
سال: 2003
ISSN: 1976-9172
DOI: 10.5391/jkiis.2003.13.3.360